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Abstract

A good motion retargeting cannot be reached without
reasonable consideration of source-target differences on
both the skeleton and shape geometry levels. In this work,
we propose a novel Residual RETargeting network (R2ET)
structure, which relies on two neural modification modules,
to adjust the source motions to fit the target skeletons and
shapes progressively. In particular, a skeleton-aware mod-
ule is introduced to preserve the source motion semantics. A
shape-aware module is designed to perceive the geometries
of target characters to reduce interpenetration and contact-
missing. Driven by our explored distance-based losses that
explicitly model the motion semantics and geometry, these
two modules can learn residual motion modifications on
the source motion to generate plausible retargeted motion
in a single inference without post-processing. To balance
these two modifications, we further present a balancing
gate to conduct linear interpolation between them. Ex-
tensive experiments on the public dataset Mixamo demon-
strate that our R2ET achieves the state-of-the-art perfor-
mance, and provides a good balance between the preserva-
tion of motion semantics as well as the attenuation of in-
terpenetration and contact-missing. Code is available at
https://github.com/Kebii/R2ET.

1. Introduction
As a process of mapping the motion of a source charac-

ter to a target character without losing plausibility, motion
retargeting is a long-standing problem in the community of
computer vision and computer graphics. It has a wide spec-
trum of applications in game and animation industry, and
is a cornerstone of the digital avatar and metaverse tech-
nologies [25]. In recent years, learning-based retargeting
methods started sparkling in the community. Among them,
the neural motion retargeting [1, 16, 24, 25], which has ad-
vantages in intelligent perception and stable inference, be-
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Figure 1. Our R2ET fully considers the source-target differences
on both the skeleton and shape geometry levels. The retargeted
motion of R2ET preserves motion semantics, eliminates interpen-
etration, and keeps self-contact without post-optimizations.

comes a new research trend. The previous learning-based
methods utilize a full-motion mapping structure, which de-
codes joint rotations of the target skeleton as outputs, with
joint positions [16, 24, 25] or joint rotations [1] as inputs.
However, due to the gap between the Cartesian coordinate
space and the rotation space, the full joint position encoding
unavoidably introduces motion distortion. Meanwhile, the
full joint rotation encoding always leads to discontinuity in
the rotation space [1, 26].

In animation, we observe that artists usually copy the
motion of the source character, and then manually modify it
to preserve motion semantics and avoid translation artifacts,
e.g., interpenetration, during motion reuse in new charac-
ters. Inspired by this observation, we design a Residual
RETargeting network (R2ET) with a residual structure for
motion retargeting. This structure takes the source motion
as initialization and involves neural networks to imitate the
modifications from animators, as illustrated in Figure 1.

https://github.com/Kebii/R2ET


With this design, the coherence of the source motion is well
maintained, and the search space for retargeting solutions
during training is effectively reduced.

The key to achieving physically plausible single-body
motion retargeting is to understand two main differences be-
tween the source and target characters, 1) the differences in
bone length ratio; 2) the differences in body shape geome-
try. To reach this goal, we explore two modification mod-
ules, i.e., the skeleton-aware module and the shape-aware
module, to perceive the two differences.

On the skeleton level, the skeleton-aware module takes
the skeleton configurations as input to assist the transfer of
the source motion semantics, such as arm folding and hand
clapping, to the target character. To overcome the lack of
paired and semantics-correct ground truth, we directly take
the supervision signal from the input source motion. The
motion semantics is explicitly modeled as a normalized Dis-
tance Matrix (DM) of skeleton joints. Accordingly, the se-
mantics preservation is achieved by aligning the DM be-
tween the source and target motions (Figure 1-Semantics).

On the shape geometry level, the shape-aware module
senses the compatibility between the target character mesh
and the skeleton adjusted after motion semantics preserva-
tion to avoid interpenetration and contact-missing. To train
the module end-to-end, we introduce two voxelized Dis-
tance Fields, i.e., the Repulsive Distance Field (RDF) and
the Attractive Distance Field (ADF) (Figure 1-Geometry),
as the measurement tools for interpenetration and contact.
We sample the distance of the query vertices on the target
character mesh to the body surface in these two fields to es-
timate the degree of interpenetration and contact. With this
manner, the whole process is differentiable during training.

In practice, we find there always exists a contradic-
tion between the preservation of motion semantics and the
avoidance of interpenetration. We, therefore, propose a bal-
ancing gate to make a trade-off between the skeleton-level
and geometry-level modifications by learning an adjusting
weight. By leaving the weight to the user, our R2ET also
accepts interactive fine control from users.

With the above main designs, our R2ET preserves the
motion semantics of the source character and avoids in-
terpenetration and contact-missing issues in a single-pass
without post-processing. We evaluate our method on var-
ious complex motion sequences and a wide range of char-
acter geometries from skinny to bulky. The qualitative and
quantitative results show that our R2ET outperforms the ex-
isting learning-based methods by a large margin. The con-
tributions of this work are summarized in three-fold:

• A novel residual network structure is proposed for
neural motion retargeting, which involves a skeleton-
aware modification module, a shape-aware modifica-
tion module, and a balancing gate.

• A normalized joint Distance Matrix is presented to

guide the training of the skeleton-aware module for
explicit motion semantics modeling, and two Distance
Fields are introduced to achieve differentiable pose ad-
justment learning.

• Extensive experiments on the Mixamo [2] dataset
demonstrate that our R2ET achieves the state-of-the-
art performance qualitatively and quantitatively.

2. Related Work
Motion Retargeting. Motion retargeting is pioneered by
[7], which identifies features of the source motions as kine-
matic constraints and solves the space-time optimization
problem. Following it, many optimization-based motion re-
targeting methods were proposed successively by introduc-
ing specific constraints, e.g., dynamics constraints [22], in-
verse kinematics [14], joint angle constraints [5], Euclidean
distance [4], and trajectory constraints [6]. Recently, there
has been a surge of interest in studying deep-learning-based
motion retargeting. Jang et al. [10] used a deep autoen-
coder combining the DC-IGN [13] and the U-Net [21] to
generate human motions. Villegas et al. [25] trained a Neu-
ral Kinematic Network for unsupervised motion retarget-
ing. Aberman et al. [1] proposed a Skeleton-Aware Net-
work for retargeting motion between skeletons with differ-
ent topologies. Lim et al. [16] developed a novel archi-
tecture which separately learns frame-by-frame poses and
overall movement. Li et al. [15] introduced an iterative
method to yield retargeted motions based on a trained mo-
tion autoencoder. All these methods were performed on ar-
ticulated skeletons while ignoring the shape geometry of
the characters. Thus, they are prone to produce unreal-
istic results on skinned motions. Villegas et al. [24] pre-
sented a latent-space optimization method for skinned mo-
tions to preserve self-contacts and prevent interpenetration,
but this post-processing method is cumbersome and is un-
suitable for a stable real-time system. In contrast to the
above methods, we propose a new network R2ET for skele-
tal and skinned motion retargeting with respect to motion
semantics and character shapes, which can be trained in an
end-to-end fashion.
Geometry-aware Motion Modeling. There is tremendous
work on learning geometry-aware deep motion represen-
tations [20]. Gomes et al. [8] leveraged the human body
shape in the retargeting process while considering the phys-
ical constraints of the motion in the 2D image domain. Peng
et al. [19] introduced the neural blend weight fields to re-
construct an animatable human model from a multi-view
video. These works extract human motion from RGB-based
videos or images, while our work looks at the motion retar-
geting of humanoid characters in 3D space. Jin et al. [11]
designed a volumetric mesh that surrounds a character’s
skin to preserve the spatial relationships of humans. Bas-
set et al. [3] proposed an optimization-based method to de-
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Figure 2. Overview of the proposed network R2ET, which has three decoupled modules, i.e., the skeleton-aware module ∆Fs, the shape-
aware module ∆Fg , and the balancing gate Fw. The Distance Matrix (DM) and the Distance Field (DF) are two types of distance
measurements that guide the network to learn the information of semantics and geometry.

form the source shape in the desired pose using three en-
ergy functions. In this work, we designed two neural resid-
ual modules with distance-based losses to learn the motion
semantics and the character geometrics for motion retarget-
ing. Our method mainly copes with the animated characters
with articulated skeletons, but can be also extended to re-
target the motion from Skinned Multi-Person Linear Model
(SMPL) [17] estimated from RGB videos.

3. Method
Given the motion sequence m of the input character A

and the skeleton and mesh of a target character B under
rest-pose, two branches are involved to retarget the global
root motion, i.e., velocities and rotations {vt}Tt=1, v ∈ R4,
and the local joint rotation quaternions {qt}Tt=1, q ∈ RN×4,
respectively, as Figure 2 shows. N and T indicate the num-
ber of joints and the sequence length. The time-index t
is ignored in the following for simplification. The global
root movement is simply processed by normalizing and de-
normalizing with respect to the heights of the source and
target character. The motion is translated framewisely. In-
spired by the creation process in animation, we design a
residual learning structure model R2ET to achieve skeleton-
aware and shape-aware local motion retargeting automati-
cally. In particular, our R2ET takes the source motion qA
as an initialization. A skeleton-aware modification module
∆qs = ∆Fs(·) is introduced to maintain motion semantics,
and a shape-aware modification module ∆qg = ∆Fg(·) is
involved to tackle the interpenetration and contact-missing
issues. A balancing gate Fw is located at the end of this
pipeline to balance the two motion modifications. The
whole framework is then formulated as:

qB = Fw( qA, ∆qs, ∆qg ), (1)

In contrast to [16,25] which take joint positions as input, we
focus on retargeting the motions in the rotation space as [1].
The details of ∆Fs, ∆Fg and Fw are introduced in Section
3.2, Section 3.3 and Section 3.4, respectively.

3.1. Base Losses
One of the challenges in neural motion retargeting is that

there is always no paired ground truth as target motion su-
pervision. Following [16], we utilize the self-reconstruction
principle and adversarial learning as basic training rules to

train ∆Fs, ∆Fg and Fw in an unsupervised way.
During training, the self-reconstruction regularization is

followed in two ways: 1) reconstructing the exact source
motion in source character (see Section 3.2), 2) minimizing
the pose modifications in pose adjustment (see Section 3.3).
To avoid the quaternion ambiguity and reduce the position
error accumulation along the kinematic chain, the joint ro-
tations and positions are reconstructed simultaneously. Ac-
cordingly, the reconstruction loss is defined as:

Lrec(q, q̂) =
∥∥q − q̂

∥∥2
2
+
∥∥fK(q,γ)− fK(q̂,γ)

∥∥2
2
, (2)

where q is the input rotation and q̂ is the estimated one. fK
is a Forward Kinematics (FK) layer [25] that maps the local
joint rotations to the global joint positions by referring the
rest-pose configuration γ ∈ RN×3.

To achieve realistic motion retargeting, a discriminator
δ(·) is introduced to differentiate the translated motion se-
quences from the genuine ones. A motion discrimination
loss is designed based on the adversarial training [9]:

Ladv(q̂) = Em∼preal

[
log δ(m)

]
+

Em∼p(q̂)

[
log

(
1− δ(m)

)]
,

(3)

in which p(·) represents the distribution of the real motions
or fake retargeted motions controlled by q̂.

Besides, a rotation constraint loss [25] is introduced to
limit the y-axis Euler angles within a range, which avoids
excessive joint twisting:

Lrot(q̂) =
∥∥max

(
0, |ϵy(q̂)| − α

)∥∥2
2
. (4)

The function ϵy(·) converts the input quaternion to the Euler
angle of y-axis, and α is the angle limitation bound. max(·)
is an element-wise function that returns the maximum num-
ber between the two inputs.

With these definitions, the base loss is thereafter defined
by the weighted summation of the above losses as follows:

Lbase(q, q̂) = Lrec + λLadv + µLrot, (5)

where λ and µ are the loss balancing factors.

3.2. Skeleton-aware Module
The motion residual design can help maintain the motion

coherence from the source character and meanwhile pro-
vides a good initialization for motion translation. However,
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Figure 3. The detailed architectures of the proposed network R2ET and the transformer-based skeleton-aware module.

owing to the differences of bone length and skeleton pro-
portion between source and target characters, motion copy
qcp = qA may ignore the source motion semantics. In this
section, we will introduce the skeleton-aware module ∆Fs

for motion semantics preservation.
The skeleton-aware module takes the rest-pose skele-

tons γA and γB as well as the copied motion qcp as input,
and outputs the semantics-oriented quaternion modification
∆qs ∈ RN×4. With this estimated modification, a Hamil-
ton Product is applied to modify the motion copy qcp and
thereafter to preserve the motion semantics in the output
qγ
B , namely:

qγ
B = ∆qs ⊗ qcp

= ∆Fs(γA,γB , qcp; θs)⊗ qcp,
(6)

where θs indicates the parameter of module ∆Fs.

Semantics Preservation. There is no paired ground truth
as strong semantics supervision. By utilizing the property
of motion retargeting, we here take the supervision signals
from the source motion. We model the motion seman-
tics preservation as the maintaining of the source normal-
ized pair-wise joint distances in the target character pose,
frame by frame. We introduce a normalized Distance Ma-
trix (DM) D ∈ RN×N to represent the motion semantics,
i.e., pair-wise joint distances as shown in Figure 4. The
columns of the matrix indicate the query joints, and the rows
represent the reference joints. The element di,j of D repre-
sents the Euclidean distance from query joint i to reference
joint j. We extract the pose DM from the source character
and regard it as a supervision signal to guide the learning
of target pose DM. With this design, a Semantics Similarity
loss is then defined as:

Lsem =

∥∥∥∥∥η
(
DA

hA

)
− η

(
DB

hB

)∥∥∥∥∥
2

2

, (7)

where h is the height of the skeleton. η(·) is an L1 normal-
ization performed on each row of the distance matrix. This
normalization operation eliminates the difference of bone

lengths and heights between the source and target skeletons.
To support the pair-wise joint relationship learning, we

introduce a Transformer structure [23], whose attention
mechanism is suitable for pair-wise learning, to build the
skeleton-aware module. As the right of Figure 3 shows, our
Transformer-based structure consists of two Transformer
encoders and one MLP decoder. The Transformer encoders
process γ and q independently. In this process, N joint
features are treated as N tokens with Ctk channels, and
they are encoded by an Multi-head Attention and a Layer
Normalization operations. Then, the feature of γ and q are
concatenated and position-encoded to obtain an embedding
with Ceb channels. In the end, an MLP is shared within
N joints to decode the rotation modifications ∆qs for these
joints. With the loss and model structure introduced above,
the skeleton-aware module can be trained by:

min
θs

Lbase(qcp, q
γ
B) + νLsem, (8)

where ν is the loss balancing factor. The reconstruction loss
is applied when the source and the target characters are the
same. We sample the target character as the source one with
a probability of 0.5.

3.3. Shape-aware Module
We introduce a shape-aware module ∆Fg in this section

to ensure the retargeted skinned motion is interpenetration-
free and contact-preserved, as illustrated in the middle part
of Figure 3. The shape-aware module takes the shape in-
formation ϕ of each body part in the target character as
well as the ∆Fs-modified local joint rotation qγ

B as input,
and outputs the geometry-oriented quaternion modification
∆qg ∈ RN×4. ϕ ∈ RN×3 is represented by the edge-
lengths of the body part bounding box corresponding to
each joint in the rest-pose. As we observed, most of the
interpenetration and contact-missing issues occur between
the limbs and the main body. We, therefore, choose to only
adjust the rotations of four target limbs and introduce four
MLPs to estimate rotation modifications for them indepen-
dently. With the estimated rotation modifications, the ad-



Figure 4. Illustration of the distance measurements. DM is the
normalized Distance Matrix of the skeleton joints. RDF and ADF
are the Distance Fields inside and outside the main body.

justed joint rotation qγ+ϕ
B is then defined as:

qγ+ϕ
B = ∆qg ⊗ qγ

B

= ∆Fg(ϕB , q
γ
B ; θg)⊗ qγ

B ,
(9)

where θg represents the parameter of module ∆Fg .

Penetration-free & Contact-preserving. To achieve dif-
ferentiable pose adjustment learning in respect of mesh ge-
ometry, we introduce two truncated distance fields, the Re-
pulsive Distance Field (RDF) ψR inside the main body and
the Attractive Distance Field (ADF) ψA around the body
surface. These two fields are illustrated in Figure 4 (b,c).
RDF assists the network to force the penetrating vertices
to be apart from the interpenetration area, and the ADF at-
tracts the near-contact vertices adjusted after motion seman-
tics preservation to be close to the body surface. With the
adjusted rotation qγ+ϕ

B , we first deform the mesh vertice set
of the target character ΦB by applying Linear Blend Skin-
ning (LBS). Hereafter, ψR and ψA are estimated by vox-
elizing the deformed target mesh. Each node on the voxel
grid records its distance to the body surface from inside or
outside, and we can thus measure the body-surface devi-
ation of each query vertice e on the deformed target mesh
by interpolating four node distances on its surrounding tight
voxel grid. With this mechanism, our model can be trained
to handle the interpenetration and contact-missing problem
in an end-to-end manner, and translate a source motion to
a plausible target motion during inference without post-
processing. These two fields are embedded into two losses,
the Repulsive and Attractive loss, respectively to achieve
end-to-end training, and they are defined as:

Lrep =
1

Nl

∑
e∈El

ψR(e), Latt =
1

Nh

∑
e∈Eh

ψA(e), (10)

where El = {ei}Nl
i=1 and Eh = {ei}Nh

i=1 are the vertices set
of the deformed target mesh’s limbs and hands, respectively.
Nl and Nh are the corresponding numbers of vertices. ψ(e)
samples the ψ value for each vertex e in a differentiable
way. ∆Fg consists of four independent networks corre-
sponding to the four limbs of the character. Accordingly,
these four networks are optimized by four related LEl

rep as:

min
θg

Lbase(q
γ
B , q

γ+ϕ
B ; θg) + κ

4∑
i=1

LEi
l

rep( · ; θi
g), (11)

where κ is the balancing hyper-parameter, θg = [θi
g]

4
i=1. As

repulsing and attracting the mesh vertices simultaneously

would cause unstable training convergence, we do not in-
volve Latt here but leave it in the next Balancing module.

3.4. Balancing Gate
In practice, it is challenging to learn the motion seman-

tics preservation at the skeleton level and meanwhile train
the network to tackle the interpenetration as well as contact-
missing issues at the shape-geometry level. Let’s take the
bottom of Figure 1 as an instance. When retargeting motion
from a thin character to an obese character, if only the rela-
tive positions of the joints are maintained, it will inevitably
lead to interpenetration. On the other side, if only the target
shape is considered, the retargeted motion may lose motion
semantics. To overcome this obstacle, we introduce an ad-
ditional MLP module Fw to balance the influence between
the two modifications ∆qs and ∆qg by a learned balancing
factor w ∈ RN . This balancing process is achieved by a
linear interpolation between qγB and qγ+ϕ

B :

qB = (1−w) · qγ
B +w · qγ+ϕ

B . (12)

in which w = Fw(γB ,ϕB , q
γ
B ; θw). θw indicates the pa-

rameters of Fw. Each element of w is ranged from 0 to 1.
The symbol “·” indicates scaling each row of q by each el-
ement of w. By leaving the vector w to the user, we can
also manually adjust its value at each joint to finely control
the retargeted results. To reach an optimized balancing, Fw

can be trained by:

min
θw

Lbase(q
γ+ϕ
B , qB) + κLrep + ιLatt + τLreg, (13)

where κ, ι, and τ are hyper-parameters. Lreg is a L2 regu-
larization loss for w.

4. Experiments
Datasets. We evaluate our R2ET on the Mixamo dataset
[2], which is an animation repository performed by multiple
3D virtual characters with different skeletons and shapes.
For training, we collect 1952 non-overlapping motion se-
quences of seven characters and randomly sample 60 frames
from each sequence. For testing, we collect 800 motion se-
quences of 11 characters and each sequence has 120 frames.
We have unseen character (UC), unseen motion (UM), seen
character (SC), and seen motion (SM) so that four splits
UC+UM, UC+SM, SC+UM, SC+SM are considered in the
experiment. Around 3/4 of the test samples are unseen. The
Mixamo dataset does not provide clean Ground Truth (GT):
many of the motions may have interpenetration or contact-
missing issues which makes geometry learning challenging.
For a fair comparison, we follow the spirit of [25] to imple-
ment experiments.
Implementation details. We select N = 22 joints for each
character in our experiments. The hyper-parameters λ, µ,
ν, κ, ι, and τ in loss functions are set as 2.0, 10.0, 100.0,
0.5, 0.5, and 0.005, respectively. The margin factor α in the
Rotation Constraint loss is defined as 100. We implement
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Figure 5. Qualitative results of skeletal motion retargeting. ∆D indicates the DM difference between the motion copy and our result.

our model based on the PyTorch framework [18] and apply
the Adam optimizer [12] to train the network. The training
process is divided into two stages: firstly train the skeleton-
aware module independently, then freeze its parameters and
train the shape-aware module and the balancing gate. Please
see Sup. Mat. for more details.

Evaluation metrics. We evaluate the results from two as-
pects: skeleton and geometry levels. For skeletal motions,
the metric Mean Square Error (MSE) and local MSE are
to measure how close the retargeted joint positions are to
the GT provided in the Mixamo. The local MSE is calcu-
lated when the root of the retargeted motion is aligned with
that of the GT. The joint position error is normalized by the
character height [25]. The geometric evaluation includes
the measurement of interpenetration and self-contact. In-
terpenetration is scored by the ratio of the number of pene-
trated limb vertices to the total number of limb vertices in
each frame. Self-contact is measured by the average dis-
tance from the vertex of the hands to the surface of the
body. Additionally, we also implement qualitative analy-
sis and user study to verify the advance of our method. The
methods included for comparison are recent deep-learning-
based methods NKN [25], PMnet [16], and SAN [1].

4.1. Qualitative Results
Semantics. Figure 5 visualizes the effect of the skeleton-
aware module of R2ET on motion semantics preservation
in skeletal motion retargeting. R2ETw/oGW means our
method with only the Skeleton-aware Module equipped.
We retarget the motion of the bones among small, medium,
and large skeletons with different bone length ratios. The
skeleton-aware module can well preserve the motion se-
mantics according to the characteristics of the target char-
acter’s skeleton. For example, in the top-left row of Figure
5, the ”arm folding” pose is retargeted from a small char-
acter to a large one, but the existing methods cannot accu-
rately preserve the semantics, and the result of motion copy
is more like ”hand clapping”. Our R2ET can perceive the
key differences between these two skeletons, i.e., the bone
length ratio of the arms to the forearms, and adaptively ad-
just the copied rotations to generate a reasonable retargeted
motion. The following three cases further demonstrate that
our method, driven by the Semantics Similarity Loss, can

well perceive the skeleton motion semantics and translate it
between skeletons with large differences.

Geometry. Figure 6 shows the results of skinned motion re-
targeting among characters with different shapes. The tar-
get characters of the last two rows are unseen characters.
The existing methods barely consider the shape geometry
of target characters and their results suffer from severe inter-
penetration and contact-missing issues. Our results, which
are based on the semantics-preserved motion and adjusted
by the shape-aware module as well as the balancing gate,
can well reduce these implausible issues while maintain-
ing motion semantics as much as possible without the post-
processing. Figure 6 also visualizes the w of each joint pre-
dicted by the balancing gate. The predicted w have higher
responses on the joints whose succeeding body parts are in-
terpenetrated, and have lower responses when the motion
semantics of the corresponding parts need to be preserved.

Figure 7 (a) shows the change of the geometry-oriented
modification ∆qg with time of a motion sequence in the
Mixamo dataset. The target 1,2,3 are unseen characters.
The vector ∆qg is converted to the average z-axis Euler
angle value of two arms for simple illustration. Our shape-
aware module can accurately perceive the poses with inter-
penetration problems as the change of time and apply rea-
sonable adjustments to them. For the poses that are not suf-
fering from interpenetration, our R2ET hardly adjusts them,
so as to keep the original motion semantics as much as pos-
sible. At the same time, the modification changes smoothly
as time goes on, which ensures the coherence and natural-
ness of the retargeted motion. Figure 7 (b) shows our results
of retargeting one source motion to multiple targets. For
characters with different body shapes, our R2ET can sen-
sitively perceive their geometries and make precise adjust-
ments to the source motion. Overall, Figure 7 demonstrates
that our R2ET is robust to a variety of poses and characters.

An automatic algorithm can provide visual results that
follow the pre-defined learning constraints designed by
engineers, such as the avoidance of interpenetration and
contact-missing, but cannot always satisfy the aesthetic
needs of the animators. Thanks to the flexible balanc-
ing gate, our R2ET overcomes this drawback as Figure 8
shows. By gradually scaling w, we can get results that vary
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Figure 7. (a) The change of the geometry-oriented modification
∆qg of a motion sequence on time domain. (b) Our results of
retargeting one source to multi-targets.

smoothly from the arm pose that preserves the motion se-
mantics to the one that avoids interpenetration, thereby in-
teractively selecting the visually best results.

4.2. Quantitative Results
Comparison with the state-of-the-arts. Table 1 shows
the comparison between our method and the state-of-the-
arts. Considering that the Mixamo dataset may create a new
character with an archived motion by using motion copy,
the “Copy” has the lowest MSE and local MSE. However,

𝒘𝒘: 0 → 1
Figure 8. Manually adjusting the balancing gate w can obtain
smooth motion adjustment.

this does not mean that the motion copy is the best choice
(See Figure 5 and Figure 6). We here just treat MSE as
an auxiliary reference metric for comparison. Compared
with NKN, PMnet, and SAN which focus on skeletal mo-
tion retargeting, our R2ETw/oGW reduces the MSE by 87%
(0.297 vs 2.298), 63% (0.297 vs 0.806), and 7% (0.297 vs
0.321), respectively. The MSE of the PMnet with rotation-
input (PMnet*) is lower than the PMnet with position-input
but is also worse than ours. The above results show that our
method can well reconstruct the source motion while adjust-
ing the local motion according to the skeletal configurations
to make it more in line with the motion semantics.

As Table 1 shows, the GT of the Mixamo dataset
bears the interpenetration and contact-missing issues. Our
R2ETw/oW , with the help of the shape-aware module, can
perceive the geometry of characters and reduce the interpen-
etration effectively. Compared with the GT, our R2ETw/oW

reduces the penetration rate by more than 48% (4.68 vs
9.02). Without the balancing gate equipped, the contact can
not be well maintained while reducing interpenetration. Our
full model, i.e., R2ET, reaches a good balance among these
three quantitative metrics and also obtains the best qualita-
tive visualization results (see Figure 6). More results about



Table 1. Comparison with the state-of-the-arts. MSElc is the local
MSE. R2ETw/oGW is the model with the skeleton-aware module
only. R2ETw/oW is the model without the balancing gate. Copy†
is the motion copy without the global motion normalization.

Methods Inp. MSE↓ MSElc
↓ Pen.%↓ Con.cm↓

GT - - - 9.02 4.92

NKN [25]
Pos.

2.298 0.575 8.96 4.42
PMnet [16] 0.806 0.281 7.11 14.7

Copy

Rot.

0.267 0.060 9.23 4.95
Copy† 3.087 0.060 9.23 4.95
SAN [1] 0.321 0.118 8.91 4.86
PMnet* 0.374 0.120 9.03 5.24

R2ETw/oGW

Rot.
0.297 0.094 9.09 4.93

R2ETw/oW 0.378 0.178 4.68 5.31
R2ET (Ours) 0.318 0.116 5.94 3.57

Table 2. Ranking results of the user study. We invite 100 users to
compare our retargeting results to that of the recent methods from
three aspects, i.e., overall quality (Q), semantics preservation (S),
and motion details (D).

Methods Skeletal Motion Skinned Motion

Q↓ S↓ D↓ Q↓ S↓ D↓

Copy 1.88 1.83 1.84 1.84 1.84 1.93
NKN [25] 3.37 3.45 3.40 3.44 3.44 3.42
PMnet [16] 3.06 3.06 3.06 3.10 3.07 3.00
R2ET (Ours) 1.69 1.67 1.70 1.63 1.65 1.64

the seen/unseen splits can be seen in Sup. Mat.
Figure 9 shows the comparisons of the penetration rates

of the character’s four limbs between the motion copy and
our models. The interpenetration issues mainly occur be-
tween the arms and the body of the character, and our mod-
els can significantly reduce their penetration rates.

The Contact-aware Model in [24] focuses on skinned
motion retargeting and can also effectively reduce interpen-
etration and preserve self-contacts. However, unlike our
R2ET, the Contact-aware Model adopts a post-processing
method to optimize the latent space of motion feature,
which may not generate plausible results in a single infer-
ence pass, and it may result in unstable real-time inference.
Therefore, our method is more efficient and easier to use.

Figure 10 shows the change of the end-effector’s height
of a retargeted motion on time domain. Compared to the
NKN and SAN that are based on the full-motion mapping
structure, our R2ET with the residual structure can obtain
smooth and stable retargeted motion in time series.

4.3. User Study
We conduct a user study to evaluate the performance of

our R2ET against the relevant methods NKN, PMnet, and
motion copy. We invited 100 users and gave them six skele-
tal action videos and seven shape action videos in total to
evaluate. Each video includes one source motion and four
anonymous results. We ask users to rank the four results
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Figure 10. The change of the left-hand end-effector’s height of a
retargeted motion on time domain.

in three aspects: overall quality (Q), semantics preservation
(S), and motion details (D). After excluding abnormal ques-
tionnaires, we collect 3120 ranking comparisons statistics
in total and the average rank of the methods is summarized
in Table 2. For skeletal motion, our method ranks 1.68 on
average. For skinned motion, our method ranks 1.64 on
average. In general, more than 71.2% of users prefer the
retargeting results of our method.

5. Conclusions
A novel network R2ET with residual structure is pro-

posed for neural motion retargeting. In R2ET, two motion
modification modules are explored to assist in generating
plausible target motion. The skeleton-aware module adjusts
the input motion to preserve source motion semantics in the
target character. The shape-aware module senses the com-
patibility between the target shape and semantics-preserved
pose to avoid interpenetration and contact-missing. Be-
sides, a balancing gate is designed to make a trade-off be-
tween the skeleton-level and geometry-level modifications
by learning an adjusting weight. With the help of two
distance-based measurements, R2ET is trained end-to-end.
Extensive experiments on the Mixamo dataset demonstrate
that our R2ET achieves the state-of-the-art motion retarget-
ing performance. It provides a good balance between the
preservation of motion semantics and the reduction of inter-
penetration and contact-missing without post-processing.
Limitations. One potential drawback lies in the noisy mo-
tion data of the adopted Mixamo dataset. We endeavor to
reduce noise interference for future work. Foot contact is
not our focus but can be tackled by a method in [1].
Acknowledgements. This work was supported by the fund
of Tencent AI Lab RBFR2022012, and the Natural Science
Fund for Distinguished Young Scholars of Hubei Province
under Grant 2022CFA075.
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